Further improvements for connection recovery

This commit is contained in:
Djuri Baars 2024-04-16 15:17:34 +02:00
parent 2ef56c1938
commit ad0800c233
11 changed files with 51 additions and 7561 deletions

View file

@ -248,13 +248,28 @@ void stopBlockNotify()
if (blockNotifyClient == NULL)
return;
esp_websocket_client_close(blockNotifyClient, portMAX_DELAY);
esp_websocket_client_close(blockNotifyClient, pdMS_TO_TICKS(5000));
esp_websocket_client_stop(blockNotifyClient);
esp_websocket_client_destroy(blockNotifyClient);
blockNotifyClient = NULL;
}
void restartBlockNotify()
{
stopBlockNotify();
if (blockNotifyClient == NULL) {
setupBlockNotify();
return;
}
// esp_websocket_client_close(blockNotifyClient, pdMS_TO_TICKS(5000));
// esp_websocket_client_stop(blockNotifyClient);
// esp_websocket_client_start(blockNotifyClient);
}
int getBlockFetch()
{
String mempoolInstance =

View file

@ -29,6 +29,8 @@ uint getBlockMedianFee();
bool isBlockNotifyConnected();
void stopBlockNotify();
void restartBlockNotify();
bool getBlockNotifyInit();
uint getLastBlockUpdate();
int getBlockFetch();

View file

@ -50,7 +50,7 @@ void IRAM_ATTR handleButtonInterrupt() {
}
void setupButtonTask() {
xTaskCreate(buttonTask, "ButtonTask", 4096, NULL, tskIDLE_PRIORITY,
xTaskCreate(buttonTask, "ButtonTask", 3072, NULL, tskIDLE_PRIORITY,
&buttonTaskHandle); // Create the FreeRTOS task
// Use interrupt instead of task
attachInterrupt(MCP_INT_PIN, handleButtonInterrupt, CHANGE);

File diff suppressed because it is too large Load diff

View file

@ -1,795 +0,0 @@
/*
* The little filesystem
*
* Copyright (c) 2022, The littlefs authors.
* Copyright (c) 2017, Arm Limited. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef LFS_H
#define LFS_H
#include "lfs_util.h"
#ifdef __cplusplus
extern "C"
{
#endif
/// Version info ///
// Software library version
// Major (top-nibble), incremented on backwards incompatible changes
// Minor (bottom-nibble), incremented on feature additions
#define LFS_VERSION 0x00020009
#define LFS_VERSION_MAJOR (0xffff & (LFS_VERSION >> 16))
#define LFS_VERSION_MINOR (0xffff & (LFS_VERSION >> 0))
// Version of On-disk data structures
// Major (top-nibble), incremented on backwards incompatible changes
// Minor (bottom-nibble), incremented on feature additions
#define LFS_DISK_VERSION 0x00020001
#define LFS_DISK_VERSION_MAJOR (0xffff & (LFS_DISK_VERSION >> 16))
#define LFS_DISK_VERSION_MINOR (0xffff & (LFS_DISK_VERSION >> 0))
/// Definitions ///
// Type definitions
typedef uint32_t lfs_size_t;
typedef uint32_t lfs_off_t;
typedef int32_t lfs_ssize_t;
typedef int32_t lfs_soff_t;
typedef uint32_t lfs_block_t;
// Maximum name size in bytes, may be redefined to reduce the size of the
// info struct. Limited to <= 1022. Stored in superblock and must be
// respected by other littlefs drivers.
#ifndef LFS_NAME_MAX
#define LFS_NAME_MAX 255
#endif
// Maximum size of a file in bytes, may be redefined to limit to support other
// drivers. Limited on disk to <= 2147483647. Stored in superblock and must be
// respected by other littlefs drivers.
#ifndef LFS_FILE_MAX
#define LFS_FILE_MAX 2147483647
#endif
// Maximum size of custom attributes in bytes, may be redefined, but there is
// no real benefit to using a smaller LFS_ATTR_MAX. Limited to <= 1022.
#ifndef LFS_ATTR_MAX
#define LFS_ATTR_MAX 1022
#endif
// Possible error codes, these are negative to allow
// valid positive return values
enum lfs_error {
LFS_ERR_OK = 0, // No error
LFS_ERR_IO = -5, // Error during device operation
LFS_ERR_CORRUPT = -84, // Corrupted
LFS_ERR_NOENT = -2, // No directory entry
LFS_ERR_EXIST = -17, // Entry already exists
LFS_ERR_NOTDIR = -20, // Entry is not a dir
LFS_ERR_ISDIR = -21, // Entry is a dir
LFS_ERR_NOTEMPTY = -39, // Dir is not empty
LFS_ERR_BADF = -9, // Bad file number
LFS_ERR_FBIG = -27, // File too large
LFS_ERR_INVAL = -22, // Invalid parameter
LFS_ERR_NOSPC = -28, // No space left on device
LFS_ERR_NOMEM = -12, // No more memory available
LFS_ERR_NOATTR = -61, // No data/attr available
LFS_ERR_NAMETOOLONG = -36, // File name too long
};
// File types
enum lfs_type {
// file types
LFS_TYPE_REG = 0x001,
LFS_TYPE_DIR = 0x002,
// internally used types
LFS_TYPE_SPLICE = 0x400,
LFS_TYPE_NAME = 0x000,
LFS_TYPE_STRUCT = 0x200,
LFS_TYPE_USERATTR = 0x300,
LFS_TYPE_FROM = 0x100,
LFS_TYPE_TAIL = 0x600,
LFS_TYPE_GLOBALS = 0x700,
LFS_TYPE_CRC = 0x500,
// internally used type specializations
LFS_TYPE_CREATE = 0x401,
LFS_TYPE_DELETE = 0x4ff,
LFS_TYPE_SUPERBLOCK = 0x0ff,
LFS_TYPE_DIRSTRUCT = 0x200,
LFS_TYPE_CTZSTRUCT = 0x202,
LFS_TYPE_INLINESTRUCT = 0x201,
LFS_TYPE_SOFTTAIL = 0x600,
LFS_TYPE_HARDTAIL = 0x601,
LFS_TYPE_MOVESTATE = 0x7ff,
LFS_TYPE_CCRC = 0x500,
LFS_TYPE_FCRC = 0x5ff,
// internal chip sources
LFS_FROM_NOOP = 0x000,
LFS_FROM_MOVE = 0x101,
LFS_FROM_USERATTRS = 0x102,
};
// File open flags
enum lfs_open_flags {
// open flags
LFS_O_RDONLY = 1, // Open a file as read only
#ifndef LFS_READONLY
LFS_O_WRONLY = 2, // Open a file as write only
LFS_O_RDWR = 3, // Open a file as read and write
LFS_O_CREAT = 0x0100, // Create a file if it does not exist
LFS_O_EXCL = 0x0200, // Fail if a file already exists
LFS_O_TRUNC = 0x0400, // Truncate the existing file to zero size
LFS_O_APPEND = 0x0800, // Move to end of file on every write
#endif
// internally used flags
#ifndef LFS_READONLY
LFS_F_DIRTY = 0x010000, // File does not match storage
LFS_F_WRITING = 0x020000, // File has been written since last flush
#endif
LFS_F_READING = 0x040000, // File has been read since last flush
#ifndef LFS_READONLY
LFS_F_ERRED = 0x080000, // An error occurred during write
#endif
LFS_F_INLINE = 0x100000, // Currently inlined in directory entry
};
// File seek flags
enum lfs_whence_flags {
LFS_SEEK_SET = 0, // Seek relative to an absolute position
LFS_SEEK_CUR = 1, // Seek relative to the current file position
LFS_SEEK_END = 2, // Seek relative to the end of the file
};
// Configuration provided during initialization of the littlefs
struct lfs_config {
// Opaque user provided context that can be used to pass
// information to the block device operations
void *context;
// Read a region in a block. Negative error codes are propagated
// to the user.
int (*read)(const struct lfs_config *c, lfs_block_t block,
lfs_off_t off, void *buffer, lfs_size_t size);
// Program a region in a block. The block must have previously
// been erased. Negative error codes are propagated to the user.
// May return LFS_ERR_CORRUPT if the block should be considered bad.
int (*prog)(const struct lfs_config *c, lfs_block_t block,
lfs_off_t off, const void *buffer, lfs_size_t size);
// Erase a block. A block must be erased before being programmed.
// The state of an erased block is undefined. Negative error codes
// are propagated to the user.
// May return LFS_ERR_CORRUPT if the block should be considered bad.
int (*erase)(const struct lfs_config *c, lfs_block_t block);
// Sync the state of the underlying block device. Negative error codes
// are propagated to the user.
int (*sync)(const struct lfs_config *c);
#ifdef LFS_THREADSAFE
// Lock the underlying block device. Negative error codes
// are propagated to the user.
int (*lock)(const struct lfs_config *c);
// Unlock the underlying block device. Negative error codes
// are propagated to the user.
int (*unlock)(const struct lfs_config *c);
#endif
// Minimum size of a block read in bytes. All read operations will be a
// multiple of this value.
lfs_size_t read_size;
// Minimum size of a block program in bytes. All program operations will be
// a multiple of this value.
lfs_size_t prog_size;
// Size of an erasable block in bytes. This does not impact ram consumption
// and may be larger than the physical erase size. However, non-inlined
// files take up at minimum one block. Must be a multiple of the read and
// program sizes.
lfs_size_t block_size;
// Number of erasable blocks on the device.
lfs_size_t block_count;
// Number of erase cycles before littlefs evicts metadata logs and moves
// the metadata to another block. Suggested values are in the
// range 100-1000, with large values having better performance at the cost
// of less consistent wear distribution.
//
// Set to -1 to disable block-level wear-leveling.
int32_t block_cycles;
// Size of block caches in bytes. Each cache buffers a portion of a block in
// RAM. The littlefs needs a read cache, a program cache, and one additional
// cache per file. Larger caches can improve performance by storing more
// data and reducing the number of disk accesses. Must be a multiple of the
// read and program sizes, and a factor of the block size.
lfs_size_t cache_size;
// Size of the lookahead buffer in bytes. A larger lookahead buffer
// increases the number of blocks found during an allocation pass. The
// lookahead buffer is stored as a compact bitmap, so each byte of RAM
// can track 8 blocks.
lfs_size_t lookahead_size;
// Threshold for metadata compaction during lfs_fs_gc in bytes. Metadata
// pairs that exceed this threshold will be compacted during lfs_fs_gc.
// Defaults to ~88% block_size when zero, though the default may change
// in the future.
//
// Note this only affects lfs_fs_gc. Normal compactions still only occur
// when full.
//
// Set to -1 to disable metadata compaction during lfs_fs_gc.
lfs_size_t compact_thresh;
// Optional statically allocated read buffer. Must be cache_size.
// By default lfs_malloc is used to allocate this buffer.
void *read_buffer;
// Optional statically allocated program buffer. Must be cache_size.
// By default lfs_malloc is used to allocate this buffer.
void *prog_buffer;
// Optional statically allocated lookahead buffer. Must be lookahead_size.
// By default lfs_malloc is used to allocate this buffer.
void *lookahead_buffer;
// Optional upper limit on length of file names in bytes. No downside for
// larger names except the size of the info struct which is controlled by
// the LFS_NAME_MAX define. Defaults to LFS_NAME_MAX when zero. Stored in
// superblock and must be respected by other littlefs drivers.
lfs_size_t name_max;
// Optional upper limit on files in bytes. No downside for larger files
// but must be <= LFS_FILE_MAX. Defaults to LFS_FILE_MAX when zero. Stored
// in superblock and must be respected by other littlefs drivers.
lfs_size_t file_max;
// Optional upper limit on custom attributes in bytes. No downside for
// larger attributes size but must be <= LFS_ATTR_MAX. Defaults to
// LFS_ATTR_MAX when zero.
lfs_size_t attr_max;
// Optional upper limit on total space given to metadata pairs in bytes. On
// devices with large blocks (e.g. 128kB) setting this to a low size (2-8kB)
// can help bound the metadata compaction time. Must be <= block_size.
// Defaults to block_size when zero.
lfs_size_t metadata_max;
// Optional upper limit on inlined files in bytes. Inlined files live in
// metadata and decrease storage requirements, but may be limited to
// improve metadata-related performance. Must be <= cache_size, <=
// attr_max, and <= block_size/8. Defaults to the largest possible
// inline_max when zero.
//
// Set to -1 to disable inlined files.
lfs_size_t inline_max;
#ifdef LFS_MULTIVERSION
// On-disk version to use when writing in the form of 16-bit major version
// + 16-bit minor version. This limiting metadata to what is supported by
// older minor versions. Note that some features will be lost. Defaults to
// to the most recent minor version when zero.
uint32_t disk_version;
#endif
};
// File info structure
struct lfs_info {
// Type of the file, either LFS_TYPE_REG or LFS_TYPE_DIR
uint8_t type;
// Size of the file, only valid for REG files. Limited to 32-bits.
lfs_size_t size;
// Name of the file stored as a null-terminated string. Limited to
// LFS_NAME_MAX+1, which can be changed by redefining LFS_NAME_MAX to
// reduce RAM. LFS_NAME_MAX is stored in superblock and must be
// respected by other littlefs drivers.
char name[LFS_NAME_MAX+1];
};
// Filesystem info structure
struct lfs_fsinfo {
// On-disk version.
uint32_t disk_version;
// Size of a logical block in bytes.
lfs_size_t block_size;
// Number of logical blocks in filesystem.
lfs_size_t block_count;
// Upper limit on the length of file names in bytes.
lfs_size_t name_max;
// Upper limit on the size of files in bytes.
lfs_size_t file_max;
// Upper limit on the size of custom attributes in bytes.
lfs_size_t attr_max;
};
// Custom attribute structure, used to describe custom attributes
// committed atomically during file writes.
struct lfs_attr {
// 8-bit type of attribute, provided by user and used to
// identify the attribute
uint8_t type;
// Pointer to buffer containing the attribute
void *buffer;
// Size of attribute in bytes, limited to LFS_ATTR_MAX
lfs_size_t size;
};
// Optional configuration provided during lfs_file_opencfg
struct lfs_file_config {
// Optional statically allocated file buffer. Must be cache_size.
// By default lfs_malloc is used to allocate this buffer.
void *buffer;
// Optional list of custom attributes related to the file. If the file
// is opened with read access, these attributes will be read from disk
// during the open call. If the file is opened with write access, the
// attributes will be written to disk every file sync or close. This
// write occurs atomically with update to the file's contents.
//
// Custom attributes are uniquely identified by an 8-bit type and limited
// to LFS_ATTR_MAX bytes. When read, if the stored attribute is smaller
// than the buffer, it will be padded with zeros. If the stored attribute
// is larger, then it will be silently truncated. If the attribute is not
// found, it will be created implicitly.
struct lfs_attr *attrs;
// Number of custom attributes in the list
lfs_size_t attr_count;
};
/// internal littlefs data structures ///
typedef struct lfs_cache {
lfs_block_t block;
lfs_off_t off;
lfs_size_t size;
uint8_t *buffer;
} lfs_cache_t;
typedef struct lfs_mdir {
lfs_block_t pair[2];
uint32_t rev;
lfs_off_t off;
uint32_t etag;
uint16_t count;
bool erased;
bool split;
lfs_block_t tail[2];
} lfs_mdir_t;
// littlefs directory type
typedef struct lfs_dir {
struct lfs_dir *next;
uint16_t id;
uint8_t type;
lfs_mdir_t m;
lfs_off_t pos;
lfs_block_t head[2];
} lfs_dir_t;
// littlefs file type
typedef struct lfs_file {
struct lfs_file *next;
uint16_t id;
uint8_t type;
lfs_mdir_t m;
struct lfs_ctz {
lfs_block_t head;
lfs_size_t size;
} ctz;
uint32_t flags;
lfs_off_t pos;
lfs_block_t block;
lfs_off_t off;
lfs_cache_t cache;
const struct lfs_file_config *cfg;
} lfs_file_t;
typedef struct lfs_superblock {
uint32_t version;
lfs_size_t block_size;
lfs_size_t block_count;
lfs_size_t name_max;
lfs_size_t file_max;
lfs_size_t attr_max;
} lfs_superblock_t;
typedef struct lfs_gstate {
uint32_t tag;
lfs_block_t pair[2];
} lfs_gstate_t;
// The littlefs filesystem type
typedef struct lfs {
lfs_cache_t rcache;
lfs_cache_t pcache;
lfs_block_t root[2];
struct lfs_mlist {
struct lfs_mlist *next;
uint16_t id;
uint8_t type;
lfs_mdir_t m;
} *mlist;
uint32_t seed;
lfs_gstate_t gstate;
lfs_gstate_t gdisk;
lfs_gstate_t gdelta;
struct lfs_lookahead {
lfs_block_t start;
lfs_block_t size;
lfs_block_t next;
lfs_block_t ckpoint;
uint8_t *buffer;
} lookahead;
const struct lfs_config *cfg;
lfs_size_t block_count;
lfs_size_t name_max;
lfs_size_t file_max;
lfs_size_t attr_max;
lfs_size_t inline_max;
#ifdef LFS_MIGRATE
struct lfs1 *lfs1;
#endif
} lfs_t;
/// Filesystem functions ///
#ifndef LFS_READONLY
// Format a block device with the littlefs
//
// Requires a littlefs object and config struct. This clobbers the littlefs
// object, and does not leave the filesystem mounted. The config struct must
// be zeroed for defaults and backwards compatibility.
//
// Returns a negative error code on failure.
int lfs_format(lfs_t *lfs, const struct lfs_config *config);
#endif
// Mounts a littlefs
//
// Requires a littlefs object and config struct. Multiple filesystems
// may be mounted simultaneously with multiple littlefs objects. Both
// lfs and config must be allocated while mounted. The config struct must
// be zeroed for defaults and backwards compatibility.
//
// Returns a negative error code on failure.
int lfs_mount(lfs_t *lfs, const struct lfs_config *config);
// Unmounts a littlefs
//
// Does nothing besides releasing any allocated resources.
// Returns a negative error code on failure.
int lfs_unmount(lfs_t *lfs);
/// General operations ///
#ifndef LFS_READONLY
// Removes a file or directory
//
// If removing a directory, the directory must be empty.
// Returns a negative error code on failure.
int lfs_remove(lfs_t *lfs, const char *path);
#endif
#ifndef LFS_READONLY
// Rename or move a file or directory
//
// If the destination exists, it must match the source in type.
// If the destination is a directory, the directory must be empty.
//
// Returns a negative error code on failure.
int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath);
#endif
// Find info about a file or directory
//
// Fills out the info structure, based on the specified file or directory.
// Returns a negative error code on failure.
int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info);
// Get a custom attribute
//
// Custom attributes are uniquely identified by an 8-bit type and limited
// to LFS_ATTR_MAX bytes. When read, if the stored attribute is smaller than
// the buffer, it will be padded with zeros. If the stored attribute is larger,
// then it will be silently truncated. If no attribute is found, the error
// LFS_ERR_NOATTR is returned and the buffer is filled with zeros.
//
// Returns the size of the attribute, or a negative error code on failure.
// Note, the returned size is the size of the attribute on disk, irrespective
// of the size of the buffer. This can be used to dynamically allocate a buffer
// or check for existence.
lfs_ssize_t lfs_getattr(lfs_t *lfs, const char *path,
uint8_t type, void *buffer, lfs_size_t size);
#ifndef LFS_READONLY
// Set custom attributes
//
// Custom attributes are uniquely identified by an 8-bit type and limited
// to LFS_ATTR_MAX bytes. If an attribute is not found, it will be
// implicitly created.
//
// Returns a negative error code on failure.
int lfs_setattr(lfs_t *lfs, const char *path,
uint8_t type, const void *buffer, lfs_size_t size);
#endif
#ifndef LFS_READONLY
// Removes a custom attribute
//
// If an attribute is not found, nothing happens.
//
// Returns a negative error code on failure.
int lfs_removeattr(lfs_t *lfs, const char *path, uint8_t type);
#endif
/// File operations ///
#ifndef LFS_NO_MALLOC
// Open a file
//
// The mode that the file is opened in is determined by the flags, which
// are values from the enum lfs_open_flags that are bitwise-ored together.
//
// Returns a negative error code on failure.
int lfs_file_open(lfs_t *lfs, lfs_file_t *file,
const char *path, int flags);
// if LFS_NO_MALLOC is defined, lfs_file_open() will fail with LFS_ERR_NOMEM
// thus use lfs_file_opencfg() with config.buffer set.
#endif
// Open a file with extra configuration
//
// The mode that the file is opened in is determined by the flags, which
// are values from the enum lfs_open_flags that are bitwise-ored together.
//
// The config struct provides additional config options per file as described
// above. The config struct must remain allocated while the file is open, and
// the config struct must be zeroed for defaults and backwards compatibility.
//
// Returns a negative error code on failure.
int lfs_file_opencfg(lfs_t *lfs, lfs_file_t *file,
const char *path, int flags,
const struct lfs_file_config *config);
// Close a file
//
// Any pending writes are written out to storage as though
// sync had been called and releases any allocated resources.
//
// Returns a negative error code on failure.
int lfs_file_close(lfs_t *lfs, lfs_file_t *file);
// Synchronize a file on storage
//
// Any pending writes are written out to storage.
// Returns a negative error code on failure.
int lfs_file_sync(lfs_t *lfs, lfs_file_t *file);
// Read data from file
//
// Takes a buffer and size indicating where to store the read data.
// Returns the number of bytes read, or a negative error code on failure.
lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file,
void *buffer, lfs_size_t size);
#ifndef LFS_READONLY
// Write data to file
//
// Takes a buffer and size indicating the data to write. The file will not
// actually be updated on the storage until either sync or close is called.
//
// Returns the number of bytes written, or a negative error code on failure.
lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
const void *buffer, lfs_size_t size);
#endif
// Change the position of the file
//
// The change in position is determined by the offset and whence flag.
// Returns the new position of the file, or a negative error code on failure.
lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file,
lfs_soff_t off, int whence);
#ifndef LFS_READONLY
// Truncates the size of the file to the specified size
//
// Returns a negative error code on failure.
int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size);
#endif
// Return the position of the file
//
// Equivalent to lfs_file_seek(lfs, file, 0, LFS_SEEK_CUR)
// Returns the position of the file, or a negative error code on failure.
lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file);
// Change the position of the file to the beginning of the file
//
// Equivalent to lfs_file_seek(lfs, file, 0, LFS_SEEK_SET)
// Returns a negative error code on failure.
int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file);
// Return the size of the file
//
// Similar to lfs_file_seek(lfs, file, 0, LFS_SEEK_END)
// Returns the size of the file, or a negative error code on failure.
lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file);
/// Directory operations ///
#ifndef LFS_READONLY
// Create a directory
//
// Returns a negative error code on failure.
int lfs_mkdir(lfs_t *lfs, const char *path);
#endif
// Open a directory
//
// Once open a directory can be used with read to iterate over files.
// Returns a negative error code on failure.
int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path);
// Close a directory
//
// Releases any allocated resources.
// Returns a negative error code on failure.
int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir);
// Read an entry in the directory
//
// Fills out the info structure, based on the specified file or directory.
// Returns a positive value on success, 0 at the end of directory,
// or a negative error code on failure.
int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info);
// Change the position of the directory
//
// The new off must be a value previous returned from tell and specifies
// an absolute offset in the directory seek.
//
// Returns a negative error code on failure.
int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off);
// Return the position of the directory
//
// The returned offset is only meant to be consumed by seek and may not make
// sense, but does indicate the current position in the directory iteration.
//
// Returns the position of the directory, or a negative error code on failure.
lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir);
// Change the position of the directory to the beginning of the directory
//
// Returns a negative error code on failure.
int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir);
/// Filesystem-level filesystem operations
// Find on-disk info about the filesystem
//
// Fills out the fsinfo structure based on the filesystem found on-disk.
// Returns a negative error code on failure.
int lfs_fs_stat(lfs_t *lfs, struct lfs_fsinfo *fsinfo);
// Finds the current size of the filesystem
//
// Note: Result is best effort. If files share COW structures, the returned
// size may be larger than the filesystem actually is.
//
// Returns the number of allocated blocks, or a negative error code on failure.
lfs_ssize_t lfs_fs_size(lfs_t *lfs);
// Traverse through all blocks in use by the filesystem
//
// The provided callback will be called with each block address that is
// currently in use by the filesystem. This can be used to determine which
// blocks are in use or how much of the storage is available.
//
// Returns a negative error code on failure.
int lfs_fs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data);
#ifndef LFS_READONLY
// Attempt to make the filesystem consistent and ready for writing
//
// Calling this function is not required, consistency will be implicitly
// enforced on the first operation that writes to the filesystem, but this
// function allows the work to be performed earlier and without other
// filesystem changes.
//
// Returns a negative error code on failure.
int lfs_fs_mkconsistent(lfs_t *lfs);
#endif
#ifndef LFS_READONLY
// Attempt any janitorial work
//
// This currently:
// 1. Calls mkconsistent if not already consistent
// 2. Compacts metadata > compact_thresh
// 3. Populates the block allocator
//
// Though additional janitorial work may be added in the future.
//
// Calling this function is not required, but may allow the offloading of
// expensive janitorial work to a less time-critical code path.
//
// Returns a negative error code on failure. Accomplishing nothing is not
// an error.
int lfs_fs_gc(lfs_t *lfs);
#endif
#ifndef LFS_READONLY
// Grows the filesystem to a new size, updating the superblock with the new
// block count.
//
// Note: This is irreversible.
//
// Returns a negative error code on failure.
int lfs_fs_grow(lfs_t *lfs, lfs_size_t block_count);
#endif
#ifndef LFS_READONLY
#ifdef LFS_MIGRATE
// Attempts to migrate a previous version of littlefs
//
// Behaves similarly to the lfs_format function. Attempts to mount
// the previous version of littlefs and update the filesystem so it can be
// mounted with the current version of littlefs.
//
// Requires a littlefs object and config struct. This clobbers the littlefs
// object, and does not leave the filesystem mounted. The config struct must
// be zeroed for defaults and backwards compatibility.
//
// Returns a negative error code on failure.
int lfs_migrate(lfs_t *lfs, const struct lfs_config *cfg);
#endif
#endif
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif

View file

@ -1,37 +0,0 @@
/*
* lfs util functions
*
* Copyright (c) 2022, The littlefs authors.
* Copyright (c) 2017, Arm Limited. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "lfs_util.h"
// Only compile if user does not provide custom config
#ifndef LFS_CONFIG
// If user provides their own CRC impl we don't need this
#ifndef LFS_CRC
// Software CRC implementation with small lookup table
uint32_t lfs_crc(uint32_t crc, const void *buffer, size_t size) {
static const uint32_t rtable[16] = {
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c,
};
const uint8_t *data = buffer;
for (size_t i = 0; i < size; i++) {
crc = (crc >> 4) ^ rtable[(crc ^ (data[i] >> 0)) & 0xf];
crc = (crc >> 4) ^ rtable[(crc ^ (data[i] >> 4)) & 0xf];
}
return crc;
}
#endif
#endif

View file

@ -1,255 +0,0 @@
/*
* lfs utility functions
*
* Copyright (c) 2022, The littlefs authors.
* Copyright (c) 2017, Arm Limited. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef LFS_UTIL_H
#define LFS_UTIL_H
// Users can override lfs_util.h with their own configuration by defining
// LFS_CONFIG as a header file to include (-DLFS_CONFIG=lfs_config.h).
//
// If LFS_CONFIG is used, none of the default utils will be emitted and must be
// provided by the config file. To start, I would suggest copying lfs_util.h
// and modifying as needed.
#ifdef LFS_CONFIG
#define LFS_STRINGIZE(x) LFS_STRINGIZE2(x)
#define LFS_STRINGIZE2(x) #x
#include LFS_STRINGIZE(LFS_CONFIG)
#else
// System includes
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <inttypes.h>
#ifndef LFS_NO_MALLOC
#include <stdlib.h>
#endif
#ifndef LFS_NO_ASSERT
#include <assert.h>
#endif
#if !defined(LFS_NO_DEBUG) || \
!defined(LFS_NO_WARN) || \
!defined(LFS_NO_ERROR) || \
defined(LFS_YES_TRACE)
#include <stdio.h>
#endif
#ifdef __cplusplus
extern "C"
{
#endif
// Macros, may be replaced by system specific wrappers. Arguments to these
// macros must not have side-effects as the macros can be removed for a smaller
// code footprint
// Logging functions
#ifndef LFS_TRACE
#ifdef LFS_YES_TRACE
#define LFS_TRACE_(fmt, ...) \
printf("%s:%d:trace: " fmt "%s\n", __FILE__, __LINE__, __VA_ARGS__)
#define LFS_TRACE(...) LFS_TRACE_(__VA_ARGS__, "")
#else
#define LFS_TRACE(...)
#endif
#endif
#ifndef LFS_DEBUG
#ifndef LFS_NO_DEBUG
#define LFS_DEBUG_(fmt, ...) \
printf("%s:%d:debug: " fmt "%s\n", __FILE__, __LINE__, __VA_ARGS__)
#define LFS_DEBUG(...) LFS_DEBUG_(__VA_ARGS__, "")
#else
#define LFS_DEBUG(...)
#endif
#endif
#ifndef LFS_WARN
#ifndef LFS_NO_WARN
#define LFS_WARN_(fmt, ...) \
printf("%s:%d:warn: " fmt "%s\n", __FILE__, __LINE__, __VA_ARGS__)
#define LFS_WARN(...) LFS_WARN_(__VA_ARGS__, "")
#else
#define LFS_WARN(...)
#endif
#endif
#ifndef LFS_ERROR
#ifndef LFS_NO_ERROR
#define LFS_ERROR_(fmt, ...) \
printf("%s:%d:error: " fmt "%s\n", __FILE__, __LINE__, __VA_ARGS__)
#define LFS_ERROR(...) LFS_ERROR_(__VA_ARGS__, "")
#else
#define LFS_ERROR(...)
#endif
#endif
// Runtime assertions
#ifndef LFS_ASSERT
#ifndef LFS_NO_ASSERT
#define LFS_ASSERT(test) assert(test)
#else
#define LFS_ASSERT(test)
#endif
#endif
// Builtin functions, these may be replaced by more efficient
// toolchain-specific implementations. LFS_NO_INTRINSICS falls back to a more
// expensive basic C implementation for debugging purposes
// Min/max functions for unsigned 32-bit numbers
static inline uint32_t lfs_max(uint32_t a, uint32_t b) {
return (a > b) ? a : b;
}
static inline uint32_t lfs_min(uint32_t a, uint32_t b) {
return (a < b) ? a : b;
}
// Align to nearest multiple of a size
static inline uint32_t lfs_aligndown(uint32_t a, uint32_t alignment) {
return a - (a % alignment);
}
static inline uint32_t lfs_alignup(uint32_t a, uint32_t alignment) {
return lfs_aligndown(a + alignment-1, alignment);
}
// Find the smallest power of 2 greater than or equal to a
static inline uint32_t lfs_npw2(uint32_t a) {
#if !defined(LFS_NO_INTRINSICS) && (defined(__GNUC__) || defined(__CC_ARM))
return 32 - __builtin_clz(a-1);
#else
uint32_t r = 0;
uint32_t s;
a -= 1;
s = (a > 0xffff) << 4; a >>= s; r |= s;
s = (a > 0xff ) << 3; a >>= s; r |= s;
s = (a > 0xf ) << 2; a >>= s; r |= s;
s = (a > 0x3 ) << 1; a >>= s; r |= s;
return (r | (a >> 1)) + 1;
#endif
}
// Count the number of trailing binary zeros in a
// lfs_ctz(0) may be undefined
static inline uint32_t lfs_ctz(uint32_t a) {
#if !defined(LFS_NO_INTRINSICS) && defined(__GNUC__)
return __builtin_ctz(a);
#else
return lfs_npw2((a & -a) + 1) - 1;
#endif
}
// Count the number of binary ones in a
static inline uint32_t lfs_popc(uint32_t a) {
#if !defined(LFS_NO_INTRINSICS) && (defined(__GNUC__) || defined(__CC_ARM))
return __builtin_popcount(a);
#else
a = a - ((a >> 1) & 0x55555555);
a = (a & 0x33333333) + ((a >> 2) & 0x33333333);
return (((a + (a >> 4)) & 0xf0f0f0f) * 0x1010101) >> 24;
#endif
}
// Find the sequence comparison of a and b, this is the distance
// between a and b ignoring overflow
static inline int lfs_scmp(uint32_t a, uint32_t b) {
return (int)(unsigned)(a - b);
}
// Convert between 32-bit little-endian and native order
static inline uint32_t lfs_fromle32(uint32_t a) {
#if (defined( BYTE_ORDER ) && defined( ORDER_LITTLE_ENDIAN ) && BYTE_ORDER == ORDER_LITTLE_ENDIAN ) || \
(defined(__BYTE_ORDER ) && defined(__ORDER_LITTLE_ENDIAN ) && __BYTE_ORDER == __ORDER_LITTLE_ENDIAN ) || \
(defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
return a;
#elif !defined(LFS_NO_INTRINSICS) && ( \
(defined( BYTE_ORDER ) && defined( ORDER_BIG_ENDIAN ) && BYTE_ORDER == ORDER_BIG_ENDIAN ) || \
(defined(__BYTE_ORDER ) && defined(__ORDER_BIG_ENDIAN ) && __BYTE_ORDER == __ORDER_BIG_ENDIAN ) || \
(defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__))
return __builtin_bswap32(a);
#else
return (((uint8_t*)&a)[0] << 0) |
(((uint8_t*)&a)[1] << 8) |
(((uint8_t*)&a)[2] << 16) |
(((uint8_t*)&a)[3] << 24);
#endif
}
static inline uint32_t lfs_tole32(uint32_t a) {
return lfs_fromle32(a);
}
// Convert between 32-bit big-endian and native order
static inline uint32_t lfs_frombe32(uint32_t a) {
#if !defined(LFS_NO_INTRINSICS) && ( \
(defined( BYTE_ORDER ) && defined( ORDER_LITTLE_ENDIAN ) && BYTE_ORDER == ORDER_LITTLE_ENDIAN ) || \
(defined(__BYTE_ORDER ) && defined(__ORDER_LITTLE_ENDIAN ) && __BYTE_ORDER == __ORDER_LITTLE_ENDIAN ) || \
(defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
return __builtin_bswap32(a);
#elif (defined( BYTE_ORDER ) && defined( ORDER_BIG_ENDIAN ) && BYTE_ORDER == ORDER_BIG_ENDIAN ) || \
(defined(__BYTE_ORDER ) && defined(__ORDER_BIG_ENDIAN ) && __BYTE_ORDER == __ORDER_BIG_ENDIAN ) || \
(defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
return a;
#else
return (((uint8_t*)&a)[0] << 24) |
(((uint8_t*)&a)[1] << 16) |
(((uint8_t*)&a)[2] << 8) |
(((uint8_t*)&a)[3] << 0);
#endif
}
static inline uint32_t lfs_tobe32(uint32_t a) {
return lfs_frombe32(a);
}
// Calculate CRC-32 with polynomial = 0x04c11db7
#ifdef LFS_CRC
uint32_t lfs_crc(uint32_t crc, const void *buffer, size_t size) {
return LFS_CRC(crc, buffer, size)
}
#else
uint32_t lfs_crc(uint32_t crc, const void *buffer, size_t size);
#endif
// Allocate memory, only used if buffers are not provided to littlefs
//
// littlefs current has no alignment requirements, as it only allocates
// byte-level buffers.
static inline void *lfs_malloc(size_t size) {
#if defined(LFS_MALLOC)
return LFS_MALLOC(size);
#elif !defined(LFS_NO_MALLOC)
return malloc(size);
#else
(void)size;
return NULL;
#endif
}
// Deallocate memory, only used if buffers are not provided to littlefs
static inline void lfs_free(void *p) {
#if defined(LFS_FREE)
LFS_FREE(p);
#elif !defined(LFS_NO_MALLOC)
free(p);
#else
(void)p;
#endif
}
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif
#endif

View file

@ -124,9 +124,20 @@ bool getPriceNotifyInit() {
void stopPriceNotify() {
if (clientPrice == NULL) return;
esp_websocket_client_close(clientPrice, portMAX_DELAY);
esp_websocket_client_close(clientPrice, pdMS_TO_TICKS(5000));
esp_websocket_client_stop(clientPrice);
esp_websocket_client_destroy(clientPrice);
clientPrice = NULL;
}
void restartPriceNotify() {
stopPriceNotify();
if (clientPrice == NULL) {
setupPriceNotify();
return;
}
// esp_websocket_client_close(clientPrice, pdMS_TO_TICKS(5000));
// esp_websocket_client_stop(clientPrice);
// esp_websocket_client_start(clientPrice);
}

View file

@ -19,5 +19,7 @@ void setPrice(uint newPrice);
bool isPriceNotifyConnected();
void stopPriceNotify();
void restartPriceNotify();
bool getPriceNotifyInit();
uint getLastPriceUpdate();

View file

@ -718,10 +718,10 @@ void onApiRestartDataSources(AsyncWebServerRequest *request) {
AsyncResponseStream *response =
request->beginResponseStream("application/json");
stopPriceNotify();
stopBlockNotify();
setupPriceNotify();
setupBlockNotify();
restartPriceNotify();
restartBlockNotify();
// setupPriceNotify();
// setupBlockNotify();
request->send(response);
}

View file

@ -22,6 +22,8 @@
uint wifiLostConnection;
uint priceNotifyLostConnection = 0;
uint blockNotifyLostConnection = 0;
//char ptrTaskList[1500];
extern "C" void app_main()
{
@ -78,10 +80,13 @@ extern "C" void app_main()
{
Serial.println(F("Restarting price handler..."));
stopPriceNotify();
setupPriceNotify();
restartPriceNotify();
// setupPriceNotify();
priceNotifyLostConnection = 0;
}
} else if (priceNotifyLostConnection > 0 && isPriceNotifyConnected())
{
priceNotifyLostConnection = 0;
}
if (getBlockNotifyInit() && !isBlockNotifyConnected())
@ -94,15 +99,14 @@ extern "C" void app_main()
{
Serial.println(F("Restarting block handler..."));
stopBlockNotify();
setupBlockNotify();
restartBlockNotify();
//setupBlockNotify();
blockNotifyLostConnection = 0;
}
}
else if (blockNotifyLostConnection > 0 || priceNotifyLostConnection > 0)
else if (blockNotifyLostConnection > 0 && isBlockNotifyConnected())
{
blockNotifyLostConnection = 0;
priceNotifyLostConnection = 0;
}
// if more than 5 price updates are missed, there is probably something wrong, reconnect
@ -110,8 +114,8 @@ extern "C" void app_main()
{
Serial.println(F("Detected 5 missed price updates... restarting price handler."));
stopPriceNotify();
setupPriceNotify();
restartPriceNotify();
// setupPriceNotify();
priceNotifyLostConnection = 0;
}
@ -127,8 +131,8 @@ extern "C" void app_main()
{
Serial.println(F("Detected stuck block height... restarting block handler."));
// Mempool source stuck, restart
stopBlockNotify();
setupBlockNotify();
restartBlockNotify();
// setupBlockNotify();
}
// set last block update so it doesn't fetch for 45 minutes
setLastBlockUpdate(currentUptime);